Mutating loops and 2-cycles in 2-CY triangulated categories
نویسندگان
چکیده
منابع مشابه
2 8 Fe b 20 07 Heller triangulated categories Matthias
Let E be a Frobenius category. Let E denote its stable category. The shift functor on E induces, by pointwise application, an inner shift functor on the category of acyclic complexes with entries in E . Shifting a complex by 3 positions yields an outer shift functor on this category. Passing to the quotient modulo split acyclic complexes, Heller remarked that inner and outer shift become isomor...
متن کاملLocalizations in Triangulated Categories and Model Categories
Recall that for a triangulated category T , a Bousfield localization is an exact functor L : T → T which is coaugmented (there is a natural transformation Id → L; sometimes L is referred to as a pointed endofunctor) and idempotent (there is a natural isomorphism Lη = ηL : L → LL). The kernel ker(L) is the collection of objects X such that LX = 0. If T is closed under coproducts, it’s a localizi...
متن کامل2 3 M ay 2 00 7 From triangulated categories to abelian categories – cluster tilting in a general framework
A general framework for cluster tilting is set up by showing that any quotient of a triangulated category modulo a tilting subcategory (that is, a maximal oneorthogonal subcategory) carries an induced abelian structure. These abelian quotients turn out to be module categories of Gorenstein algebras of dimension at most one.
متن کاملObjects in Triangulated Categories
We introduce the Calabi-Yau (CY) objects in a Hom-finite Krull-Schmidt triangulated k-category, and notice that the structure of the minimal, consequently all the CY objects, can be described. The relation between indecomposable CY objects and Auslander-Reiten triangles is provided. Finally we classify all the CY modules of selfinjective Nakayama algebras, determining this way the self-injectiv...
متن کامل2 9 A ug 2 00 5 A definition of triangulated categories following Heller Matthias
Let E be a Frobenius category, let E denote its homotopy category. The shift functor on E induces a first shift functor on the category of acyclic complexes with entries in E by pointwise application. Shifting a complex by 3 positions yields a second shift functor on this category. Passing to the quotient modulo split acyclic complexes, Heller remarked that these two shift functors become isomo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebra
سال: 2011
ISSN: 0021-8693
DOI: 10.1016/j.jalgebra.2011.03.005